AD=-AD68 866

UNCLASSIFIED

WISCONSIN UNIV=MADISON MATHEMATICS RESEARCH CENTER F/6 12/1
ON POINTWISE AND ANALYTIC SIMILARITY OF MATRICES.(U)
DAAG29=75=-C=0024

FEB 79 S FRIEDLAND
MRC-TSR=1928




T E

—————————

REPCL e

MRC Technical Summary Report #1928 2

ON POINTWISE AND ANALYTIC SIMILARITY
OF MATRICES

Shmuel Friedland

ADAO68866

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706 \

February 1979

(Received January 25, 1979) \

DD FILE COPY

Approved for public release
Distribution unlimited

Sponsored by

U.S. Army Research Office
P.O. Box 12211

Research Triangle Park
North Carolina 27709




T

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

ON POINTWISE AND ANALYTIC SIMILARITY OF MATRICES

Shmuel Friedland

Technical Summary Report #1928
February 1979
ABSTRACT

Let A(e) and B(e) be complex valued matrices analytic in € at
the origin. A(g) P B(e) if A(e) is similar to B(e) for any
|e| < r,A(e) 3 B(e) if B(e) = T(C)A(E)T-l(e) and T(e) is analytic
and IT(e)I # 0 for Iel < r! In this paper we find a necessary and
sufficient condition on A(e) and B(e) such that A(e) 3 B(e) pro-
vided that A(e) S B(e). This problem arises in study of certain ordinary
differential equations singular with respect to a parameter € in the

origin and was first stated by Wasow.
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SIGNIFICANCE AND EXPLANATION
\“y\' The matrix problem considered in this paper arises when studying
systems of ordinary differential equations in ”ﬁoundary-]uyur"‘ situations.
A simple example is the behavior of solutions of ey" + py' 4 gy = 0 (%)

-~ 8P "

as ¢ * 0. In the general situation, a system of first order equations is
\

b

con:aiden;«i, A(u\)y' + Cy = 0, where A,B are n x n matrices. The
first step is to simplify the system using a similarity transformation,
i.e. we set A = 'l‘_l'z and multiply through by T, replacing the system
by \ , i
\ .
ops ' At Yxe + wchVx = 0 .
The matrix T is chosen s0 as to simplify the coefficient of the
derivative. ¢

A matrix A(e) is said to be analytic in ¢ at the origin if A(¢)
can be expanded in a power series in ¢. The following problem arises
when classifying the various kinds of singular behavior of solutions of
(*) tor small ¢. Suppose that B(v) = T(t)A(l)T-l(t) where  A() ,RB(v)
are analytic in ¢ at the origin., What conditions must be imposed on
A(t) and B() so that T(e) is analytic in ¢ at the origin and

TO) 18 nonsingular?  This is the question answered in this paver.

0oc it o]
UNANNOUNCTD w)
JUSUIFICATION . e

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




ON POINTWISE AND ANALYTIC SIMILARITY OF MATRICES
Shmuel Friedland
1. INTRODUCTION.

Let A(e) and B(e) be n x n complex valued matrices analytic in the parameter
€, in u - {z,|z] < r} for some r > 0. We call such matrices analytic at.the origin.
That is we have the Mclaurin expansions

™ ®
(1.1 Ae) = kgo Akek,B(t) = k'Z.o Bx‘k'ﬁ'sx €M (@)
which converge in Dr. One says that A(e) and B(e) are pointwise similar in Dz
(denote it by A(e) § B(e) if A(e) and B(e) are similar for any € € D_- A(e)
and B(e) are said to be analytically similar in Dr' (denote it by A(e) 3 B(e))

if there exists T(g)

(1.2) T(c) = Z T ek,T € M (C), (convergent for Icl <r')
k=0 k k n

such that

(1.3) IT(e)| #0 for |e| < r*

(here by |T| we denote the determinant of T) and

(1.4) B(e) = T(E)A(E)T L(e) .

The problem of determining whether two given analytic valued matrices A(e) and B(e)
are analytically similar in Dr‘ for some r' > 0 is important in study of certain
ordinary differential equation singular with respect to a parameter € in the origin
(e.g. see [4) and references therein). Clearly if A(e) 3 B(e) in D, then

Ale) I B(e) in Dr,. Naturally one poses the following question:

Problem 1.1. (Wasow [4]) Assume that A(e) §B(e) in D,. What other conditions should

e for some 0 < r' < r?

A(e) and B(e) satisfy in order that A(e) 3 B(e) in D

Consider the following example

2
i & 1 €
(1.5) Ale) = [0 1]. B(e) = [0 1 ] .
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Clearly A(g) B B(£) in @. On the other hand A(€) % B(e) in any Dr,(r' > 0).

Otherwise
=l i o 1o,
(1.6) Al(c) € “(A(e) = 1) [0 o]‘
Bl(c) - C-I(B(c) -I) = [g 3] i Il e

But this is impossible since AI(O) and Bl(O) are not similar. This shows that the
above problem does not have a simple solution.

Wasow (3] gave a simple condition when pointwise similarity implies analytic
similarity in the neighborhood of the origin. Consider the matrix equation
1.7 A(e)X - XA(e) = 0 .
Of course, we can view (1.7) as a system of n2 linear homogeneous equations in n2

unknowns x,._..,i,j =1,...,n (X = (xij);). Fix ¢ and let «(e) be the number of

ij
linearly independent solutions of (1.7). «x(€) can be casily determine by the degrees
of the invariant polynomials of A(e) (e.g. [1, Ch. 8, Sec. 2]). It is not difficult
to see that there exists 0 < p such that

(1.8) k(e) = « 0c<|e] <p.

Wasow's Condition [3]. Assume that

(1.9) x(0) = x .
Then A(e) 3 B(e) in D, if and only if A(e) 5 B(e) in D..

The aim of this paper is to give conditions under which the pointwise similarity
implies holomorphic similarity in case that Wasow's condition fails. The starting

point of our investigation is the following theorem

Theorem 2.1. Let A(e) and B(e) be n x n matrices analytic in ¢ for |c| < r.

There exists a non-negative integer w depending only on Al(€) such that

A(e) 3 B(e) for €€ Dr,(r' > 0) if and only if A(c) § B(e) for € € D, and

there exists R(e) of the form

(O]

Kk
(1.10) R(e) = kgo R s R €M (D), IRyl # 0
such that
(1.11) Ate)R(E) = R(e)BLe) = e“ loq) .
-2~
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We determine an explicit upper bound for w. We also give a simple sufficient
criterion which implies that the conditions (1.10) and (1.11) for w = 1 guarantee a
positive answer to our problem. In Section 3 we examine the conditions (1.10)=(1.11)
for w = 1. This problem leads us to the notion of conjugacy of two matrices X and
Y with respect to a matrix 2. In case that 2 = ¢l this is the standard notion of
similarity. We give a procedure to determine when X and Y are conjugate with
respect to 2 and in some cases the verification is quite straightforward. However,
the solution of the general problem is incomplete. In Section 4 we show how
to determine whether (1.11) is solvable. In fact (1.10)-(1.11) is equivalent to the
notion of strong similarity of certain upper block triangular matrices. We also give
a simple necessary and sufficient condition for the solution of Problem 1.1 for certain
type of matrices A(e) which do not satisfy the Wasow condition.

Theorem 4.2, Let A(f) be complex valued matrix analytic in ¢ at the origin.

Assume that the Wasow condition fails. Suppose that the subspace of all matrices RO

which satisfy

(1.12) R A, = A R .ter(RoA

Yo T %o g KRl =0

for all VvV which commute with A is of dimension «x. Then A(¢) 3 B(¢) it and

0'

only 1f there exists a nonsingulay matrix P commuting with A, and a matrix R such

that

{1.13) PBl - All - AOR - RAO

provided that B(+) 1s nommalized by the condition

(1.14) 5w K

That is Al and “l are conjugate with yespect to Ao.

We state a conjecture which determine the smallest « described on Theorvem 2.1.
In tact Theorem 4.2 supp-rts this conjecture. In the last section we show that (1.10) -
(1.11) for any « is equivalent to the same problem with & = 1 stated for appropriate

choice of matrices A(", A; and B('). Bi.

Pp—
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2. MAIN RESULTS.

Proof of Theorem 2. 1. Assume that the Wasow condition holds.  Then the pointwise

similarity implies analytic similarity, In that case the value of the w 18 zero.

Indeed, as A0) ~ BO) there exists non-singqular R0 such that

-1

F 1) -

(2.1 B R“ MO)R0

Now ]

3 Y - -
(2.2) All\R\\ Rnn(c\ cOQ) . i
as we ciaimed,
Suppese now that the Wasow condition fails, That s
(2.3) vosox0) 3

Rewrite the system (1.7) as a system of linear equations in n”  unknowns

X, ohed = Qyusvalty
1

(2.4) A(IX = 0
.

N 2
Here A(r) is an n” xn matrix

Ae) = « (e)), X = (x (vector) ,

LD, ) TRk

A “a, 8 -8 5 s, A U VR
aH.H.(l‘.q) a“‘\q‘ \I"‘\U I TP RIS | ;P8 n

Using the tensor product one can write
(2.0) A(r) = A(c)@1 - IOA()
See, for example |2, p. 8], The condition (2.1 implies the existence of n xn

submatiix of  Ae) = call 1t Pee)  such that

a.n [Peey] = ae®™(1 ¢ o)), avo.

Here by Il‘l we denote the determinant of a square matrix and 4
| d

(2.8) ne n" - K s i
|

We claim that 1f one can satisfy the conditiona (1.10) and (1.11) with @ = s then

Ale) a Rir). Indeed, assume that @ = s and (1.10) and (1.11) holds.  Since R\\' ¢ 0

there exists O < v' « v such that R(ﬂ-l exigts for [of <« r'.  let !

=} y
(2.9) Cle) = ROOINR(EIR() .
ode
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Clearly it is enowgh to show that  AG) 3 C(v). Also  Alv) 3 C(e). Conaider the system

P
2.10) A(CIY = YO(e) = O

Rewrite (2.10) in the form of the system in 1\2 variables

(2.11) FOY = 0,

In tensor notation

(2.12) Fe) =~ A(e)ol - 1&(e) |
According to our assumptions

20 Ate) = cte) = *oq) .

so

(2.14) Fle) = Ale) « To(AL) = ote)) = «* oy

Consider the submatrix P(e) of A(c). Assuwwe that the H rows of Pir) form the set
GON AN (V= {2 000D and the n columng of Ple)  form the set KO N x N,
Look at the corresponding submatrix Q@(e)  of F(e) which 12 formed by the rows
and the columns K. Fram (2.14) and (2.7) it follows that

2.18) lote) | = a1 » c01)) .

As C(e) 18 pointwise similav to A(e)  we must have that the system (2.10) has the
same number of linearly independent solutionsz as (1.7), Therefore any (n ¢ 1) x (n + 1)
minor of F(r) vanishes, let Y(r) Dbe the unigue solutian of (2.10) satisfying the
conditions

(2. 1e) (¢) = &8 ir (4,1) ¢ K

Yiy i1
We assert that Y(¢) is holomorphic at ¢ = 0 and
(2.17) Y(Q) = 1 |
Indeed constder the unique solution X(e) of (1.7) satiafying the condition (2.le).
Clearly X(e) = T is this solution. Using the Cramer formulas for the solutions of
(1.7 and (2.10) (only to the equations corresponding to the entvies (1, 1), (1,1 ¢ O
and taking in account (2. 7)), (2015 and (2.14) we get
(2.18) Y(e) = (1 ¢ c0(1)IX(e) + «O(V)

This establishes (2.17) and the analyticity of ¥ around the neiahborhood of the

orfgin, S0 then exists O « " < ' awch that  Y(e)  and \‘(.\-‘ holamorphic an

-




lc( < r". This proves the existence of « depending only on A(r)  such that (1.10),

(1.11) together with the assumptions Alr) “, Bir) at the origin imply that  A() 3 B(e)

at ¢ = O, Vice versa, if A(¢) 3 B(¢) for ¢ e D then A(c) § B() for ve D,

e r

and (1.10) and (1.11) hold for any inteqgor . The proof of theorem is completed,

Definition 2.1. Let A(¢) be complex valued matrix analytic in ¢ at the origin.

Then 1 is called the minimal index of A(r) at ¢ = 0 if Theorvem 2.1 holds for

W =y, but if w < u then there exists B(¢) which satisfies the conditions of

Theorem 2.1 but (1.10) and (1.11) do not imply that Ale) 3 B,

As we pointed out in the proof of Theorem 2.1 Wasow's condition (1.9) implies that
o 0. From the proof of Theorem 2.1 we deduce.

Theorem 2.2. let n be given by (2.8) and consider all non-zero n ¥ N minors of

A(e)®! - 18A(r) which must be of the form (2.7), Let Vv be the minimum of all possibie

exponents s appearing in (2.7). Then

(2.19) wEw .,
Clearly that v - 0 1f and only if the Wasow condition (1.9) holds. Next we give a
sufficient condition for u = 1

Theorem 2.3. Lot A(r) satisfy the assumptions of Theorem 2.1. Assume that the Wasow

condition fails (i.e. (2.3) holds). Suppose that Vv given in Theorem 2.2 equals to

(2.20) voe x(0) - x .

Then the minimal index of A(¢) at the orvigin does not exceed 1.

To prove this theorem we need the followina lemma

lemma 2.1. Let X be an n X n matrix whose rank iz X( n). Then for any n yn

matrix Y and analytic valued n x n matrix () (|| < ¥)  the following relations

hold
(2.21) Ix + x| = o) ,
(2.22) Ix ¢ e ¢ f8te)] = |x + x| + "o .

Proof. Let A(¢) = (a, G “'l‘ be an analytic valued matvix at ¢ = 0. tet

ij
r = (rl,....r ) Dbe a vector with non-negative integer coordinates, A= usual denote
n

“ly=

PN FRWPRESE LB

{
i
}
!
i

PRI Y SR
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n (ri)
lx| = 121 r,. By (aij

of A(e¢). From the standard formula of the derivative of the determinant we deduce

(c)): denote the matrix whose i-th row is the ri-th derivative

P (r,)
(2.23) 515 late)| = ;—flL;—ll(aij‘ )7l
de rl=p 1" """ "n
Put
(2.24) A(e) = X + €Y + Ezz(e)
and let € =0 in (2.23). Set
(ri) o
(2.25) G = (aij (0))1, .Z ToTRer T =@ =0, 520 G 5 A EL i
i=1 1 q
il,...,i
let G|. 9 be a q x q minor of G composed of i_,...,1i rows and J.s...,]
Jl,-..,J 1 q 1 q
columns of G. In view of (2.25) we have
I | . WSS 1 i i
(2.26) G jl jq = x jl jq it .1,....jk <n.
1:---lq 1:---vq )1 k

Assume first that p < n - k. Then gq > k +1 and since r(X) = k both sides of

(2.26) equal to zero. Expanding the determinant of G by the rows il""iq we

obtain that IG| = 0. Se

4 |a]

(2.27)
d:p

=0, p=0,..c) n=k =1 .
€=0

Assume now that p = n - k. Again if q > k + 1, |G| = 0. So we are left with the

case where q = k. That is, there exist 1 < ii < ié & e € i;-k < n such that
{2.28) r ® e & ¥ =1 .
1i 1n-k

In this case G is composed cf i rows of Y and il.....iK rows of X.

] ]
FERRETE

Therefore we showed

.29 ™k ae] B sty R
den-k e=0 c:!t:“_k €=0

This verifies (2.20) and (2.21).

L,
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Proof of Theorem 2.3. Assume that R(:¢) ;.A(\\ for «© ¢ = Suppose that (1.10) and

(1.11) holds for w = 1. We claim that B(c) 3 A(¢) for e € D 1

holds. Our proof 1s a modified version of the prootf of Theorem 2.1.

(2.20)

We just point out

the arguments which should be modified. According to (2.20) and the definition of

we may assume that s given in (2.7) equals to Vv. From (2.6), (2.12) and the equality

@w =1 we get

~ b )

Ale) = (A 81 - I.A’) + (A @I - T@A ) + € 0(1) ,
(2.30) 0 [¢ 1 f?
" - - - - 0
F(e) (A @81 IQAO) + l(Al.l onI) + €£70(1)

Thus we can apply Lemma 2.1 to the J X K minors of Ale)  and

=N (0141 2

(2.31) lee)| - |p(e)] = 0(1), n(0) = n" - x(0)

rf{e). So

This establishes (2.15). It is left to show (2.18). Use again the Cramer formulas for

the solutions of (1.7) and (2.10) (only for the equations corresponding to the entries

(1,1),(1,3) € J). Thus we have to consider n X n minors consisting of n - 1 columns

of A(¢) (F(¢)) from the set K and a column which is a linear combination of the

columns of A(e) (F(¢)) which do not belong to X. Clearly the rank of such a minor

at € = 0 is at most n(0). Using (2.31) and (2.22) we obtain that the difference

between the corresponding minors of R(c) and F(r) 1is at least of the form

Nn=n(0)+1
€

minors of F(e) by IQ(UI from (2.7) and (2.15) we deduce (2.18).

the theorem is completed.

v+ : %
0f1); i.e. ¢ l0(1). Dividing the minors of A(¢) by |[PG)| and the

The proot ot
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3. THE CASE w = 1.

Assume that A(e€) and B(e) are analytic valued at the origin and have the
expans.ons (1.1). Assume that A(e) 3 B(e) for € € Dr. In particular A(D) 1is
similar to B(0). By considering 'I‘B(t:)'l‘-l for a suitable T € Hn(C) we may assume

in (1.1) that

(3.1) A, =B

In that case the conditions (1.10) and (1.11) for w = 1 are equivalent to

(3.2) AjR, = RA = 0, |R0| #0,

B o - - = "
(3.3) AORI AIRO RIAO ROBI 0

Definition 3.1. Llet X,Y,Z € Mn(c). The matrix X is conjugate to Y with respect

to Z, 1if there exists a non-singular matrix P commuting with 2

(3.4) ZP - P2 =0 ,
such that
(3.5) XP - PY = 20 - Q2
for some Q € Mntc).
Denote this relation by X ~ Y(Z). Clearly, if 2 = cI then X is conjugate to

Y if and only if X 1is similar to Y. It is easy to check that for a fixed 2 the

relation X ~ Y(Z) 1is an equivalence relation. Thus, the problem of determining whether

(3.2) - (3.3) are solvable is equivalent to the problem whether Al o Bl(Ao). In this
section we shall give a partial answer to the following problem

Problem 3.1. Given X,Y,Z € Mn(¢). find necessary and sufficient conditions for X

to be conjugate to Y with respect to 2.

Clearly this problem makes sense if X,Y,2 € Mn(F) for any field #. We shall
restrict ourselves to the field of complex numbers although our approach will apply

for any field #. Our first observation is

Lemma 3.1. Let U,Z € Mn(G). Then U is a commutator of 2 and Q, i.e.
(3.6) uU=20 ~02

for some Q, if and only if

(3.7) tr(vu) = 0

vV whicii commutes with 2. (Here tr(W) denotes the trace of W).

for any




Proof. Clearly if V commutes with 2 then
(3.8) tr(VU) = tr(vzQ - VQZ) = ir(z(VQ) - vQz] = tr[(VQ)Z - VQz] = O .
Vice versa, suppose that (3.7) holds for any V which commutes with Z. Consider the

. . 2 : g
equality (3.6) as a system of n non-homogeneous equations in the unknowns

n

1). In tensor form (3.6) is given as

BT [ S TR » e
940 13 n (Q (qlJ)

(3.9) (Z®I - 182)Q = O
if we adopt the notation of the previous section. It is well known that (3.9) is

solvable if and only if 0 is orthogonal to any sclution of the adjoint system. That

is
e T n n
3.10) = ., = = O U= (u,.
(3.10 0= Z Vigugy T EENU), WS (w0 U s (g
i,I)=1
(3.11) (zoT - 182)TW = (z7@I - 182 )W = O .
Now (3.11) means that
(3.12) Z2W - w2l =0 .

Thus WT commutes with 2 and (3.10) is equivalent to (3.7). End of proof.
Let vl,...,vk form a basis for the subspace of all matrices in Mn(¢) which

commute with 2. Thus any P which satisfies (3.4) is of the form
(3.13) P=] vy .

According to Lemma 3.1 (3.5) is solvable for some Q if and only if

(3.14) trlvj(XP -PY)] =0, j=1,...,k .

The equations (3.13) - (3.14) determine the subspace [’ of all matrices P which
solve (3.4) - (3.5). It is left to find whether P contains a non-singular matrix
In priaciple this can be done by verifying a finite number of conditions.

Indeed let
K P P
o D el k
(3.15) F(v ,eeeav) = | Z vV | = |p§=n apvp, P = (Pyreeesp ), W= V)Y e

Thus /7 does not contain a non-sinqular matrix if and enly if F is zero identically.

-] O=




T e . ]

L — SR E——

1t is a standard fact that a polynomial F of degree n  is gero itdentically

only if F  vanishes at the test points

(3.10) v"U,l.....n. L ENERE

Moreover the number of test points can be reduced by ovserving that

n
.17 Cee - vane .
(3.17) P(tvl. 'Wk) t l“(v‘. vk)

Next we observe that

(3.18) X ~ ¥(2) if and only if 'rx'r'l ~ 'I‘Y'r-l('l‘:'.'l‘-‘) .

Since we are working over M"(ﬂ') we may assume that 2 is in the Jordan canonical form

(3.19) 2= dlmn(d\,....d“). J. WAL SR, Al s kw0 s

X Xk X 3 3

Here lk is the identity matrix and N O0=1 matrix whose non-gero elements are on the

k

upper diagonal. In that case the subspace of all commuting matrices

well known (e.g. (1, Ch, 8, Sec. 1)).

Lemma 3.2. Let %€ M (@) be amatrix atven by (3.19). Then a block matrix

P = ““\I*)\ll € M"(c) commutes with 2 1if and only if the blocks
a tan)y
!“B ('\‘ | } & | e 3 | I LA satinfy the following conditions
) i ] ) - 0
(3.20) if \“ # \8 l\\ﬁ o,
(aR) "
‘.-‘? - ) - " . - . s
( 1) it \“ \H I ) o for 3§ i + ng minn\“.nh)
(aR) (aR) - 5 -
}” i (el (he1) for 4 ~ 1 n“ m(n(n“.n“)

In fact if N st

1 t

i‘(\).---.i‘(\) of 2 then the number of free parametors in P ix

t
(3.22) Ne } (@ =Dn .
i=1

Applying Lemmas 3.1 and 1,2 we obtain

il

arve the degrees of the non=constant invariant polynomials

and

in

Lemma 3,3,  Assume that 2 is of the form (3.19). Then P solves (1.4) and (L%

if and only it for any two indices  «o,R such that \ = \‘ and any

3

form (3.21) the following equality holds

ol the




G

T

u
4 ke tr{vuﬂ [.Z (xijju & pﬂjyju)]} ?

(3.23) Jed
u u
= Y =
X (xij)l' (YU)1
provided that P is of the form (3.20) - (3.21). Noting that Vju = Pju =0 if
AL # A we deduce
j a
Theorem 3.1. Assume that 2 is of the form
(3.24) 2 = diag(zl,...,zv)
such that
n
.25 - = - . .
(3.25) (U)IJ zj) 0, uj # Nko ¥ ke Jk 1, v

Then X is conjugate to Y with respect to Z if and only if

Yoy = ()

2
(3.26) X 1j)l 13"

ii & Yii(zi)' i=1,...,v, X = (X

Thus in Problem 3.1 we may assume that 2 is a nilpotent matrix. In case that 2 is

similar to a diagonal matrix then Problem 3.1 has a simple solution.

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Assume furthermore that 2

is similar to a diagonal matrix. Then X ~ Y(Z) if and only if xii is similar to

Yii for 1 = Yii..iV¥

Theorem 3.2. Assume that 2 consists of one Jordan block

(3.27) Z=H H= (h ™, n

gl D™ Seoun pyetad ® Locoio

with respect to 2 if and only if

Then X = (xi )" is similar to Y = (yi

n
31 51

n-i n-i

(3.28) ) x = 7y
-1 (i+k)k k=1 (i+k)k

1= 0,i0ssn =1
k

Proof. It is a well known fact that any P which commutes with 2 given by (3.27)
is a polynomial in H

n-1 n

(3.29) P= ] agH
: i
i=0

The assumption that P is a nonsingular is equivalent to the fact that a, # 0. So we

may assume that a, = 1. Then the condition (3.14) states

-12-
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n-j-1 ’
(3.30) 0 = tr(Wxp-1IPY) = tr(xpn) - yu'p) tr[(x-!)[ i .1u"3]], R O
i=0

For j = n -1 (3.30) is equivalent to

(3.31) erl(x - ) =0 .

Assume that we already proved (3.31) for j = n - 1,...,k. By letting j in (3.30) be
k - 1 we deduce that X and Y satisfy (3.31) for k = 1. So (3.31) holds for
J=n-1...,0. This is exactly the conditions (3.28). Conversely if (3.28) hold
then (3.30) is fulfilled when P = I. So X ~ Y(2). The proof of the theorem is

completed.

«l3=




4. THE GENERAL PROBLEM.

k

@.n) LR UL WURE R Wi

for k= 0,1,...,0, where we assumed the normalization “0

(Ro,....R,) is called a solution if R.o....,R1

Denote by L. the subspace of all solutions (RO....,R )

) )

The conditions (1.11) can be stated in terms of matrix equalities

satisfy (4.1) for
the subspace

where 0 < i < 4,

of the first i matrices (RO""'RA) in the solutions (RO""

Clearly

(4.2) L

31 2 4301,4

- 1
According to Lemma 3.1 41,3

i*l
(4.3) tr(v

(R B, - AR
feh  PAETE ioje1-i

for all V which commute with AO. Thus if we constructed

Lier,y°

the subspace [, Thus if Afe) ; B(e) then A(e) 3 Ble)

jo1’

contains a non-singular matrix (v-is given in Theorem 2.2).

is the subspace of all solutions (Rn.....k1) such that

)1 =0, VA, = AV,

(4.3) determines
Now by solving (4.1) for k = § + 1 where (Ro.....R

if and only if

Theorem 4.1. Assume that A(e) and B(¢) are analytically similar at the origin.

Consider the system (4.1) for k = 0,...,3. Then

(4.4) dim [ S

j,0 =

for any j > 0. Moreover the equality sign holds if 3} is not less

Theorem 2.2).

To prove this theorem we need the followina lemma.

Lemma 4.1. Let A(e) be complex valued matrix analytic in

at the origin.

-
] all complex valued matrices X(e) = ) X e analytic in

i

at the origin and satisfy-

k=0 »

dimension «x.

-14-
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Proof. First we claim

dim U < x

tndeed lot XM (e),....x"* () be x + 1 analytic solutions of (1.7). Let G(c)

3

be n° » (+ + 1) matrix whose columns are the vectors x(”(r),.
x(l) (K‘l)(

25 ). By the

definition of «, B} ssnvaX t) are linearly dependent. So r(G(€)) - the rank

of G(¢) - satisfies r(G(¢)) «<x. 1In particular r(G(0)) <x which proves the assertion.

x(l) (x)

Next we show the existence of « analytic solutions (€)).eeeX (¢) of (1.7)
which are linearly independent for 0 <« ||] We follow the notation in the proof of
Theorem 2.1. So all (n + 1) x (n ¢+ 1) (n = nz - &) minors of A(¢)  (2.6) vanish

identically and there exist " ¥ n minor P(t) of the form (2.7).

Let K' be the complementary set of K in N x ¥, PFor a € K' define

Y(‘l) (@) 'n

(€) = (yH (¢ ,l to be the following unigue solution of (1.7)
(a) s (a)
(4.5) y“ (£) = ¢ it (1,1) = a, YH (€) =0 if a o (i,j) ¢ K*' .
From the proof of Theorem 2.1 it follows that V(M(r\ are analytic. Clearly
(Y(‘”hn. a € k', are linearly independent for ||| > 0., et H(e) be an n2 X oK

x(l) (x)

matrix whose columns are vectors () ssvvaX (¢) which are analytic solutions of

(1.7).  Assume that r(H(¢)) = x, If ¢r(H(0)) = x we finished the proof. Assume that
r(H(Q)) « x. So there exists x x x minor of H{(¢) of the form

.
4.6) lote)] = a'¢™ (1 + ¢0(1)), a' ¥ O, 8 > 1.

(x)

As x(” (0),...,X (0) are linearly dependent we have

x(i)

{ (0) =0 .

X
“.n J oa
i=1

For simplicity of notation we may assume that a. - 1. Consider a new set

£ (), ....x"% () of linearly independent analytic solutions of (1.7).
K
.8 @ e s, 1o e =1, 2 T axWia .
i=1
- =(1) =(x) =
Let H(¢) be the matrix composed of X reverX . Again if r(H(0)) = x  we are

done. Otherwise considering the corresponding minor Q(¢)  which consists of the same

-15-
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rows and columns as Q(¢), we easily deduce that

- '—
(4.9) 18te)| = a'e® "2 + c0)) .
Continuing in the same manner we shall finally deduce the lemma.

Proof of Theorem 4.1. let X(¢) be an analytic solution of (1.7). Denote

(4.10) R(e) = X(e)T ) (e)
where T(e) satisfies (1.4). Thus
(4.11) A(e)R(€) = R(e)B(e) = 0 .
We also have

=1

(4.12) Ro - xOTO .

w
k
As R(g) = X er (4.1) is satisfied for k = 0,1,2,...,. From Lemma 4.1 we deduce
k=0
the inequality (4.4). To finish the proof of the theorem we have to verify the equality

(4.13) dim L -K .,
v,0

Assume that R(s) = f Rksk satisfy (1.11). Here we do not demand that |R0| # 0.
Moreover assume thatk-g = v. Define X(¢) by the equation (4.10). From (1.11) and
(1.4) we get
AOIX(6) = X(e)A(e) = ¢ o)

Repeating the arguments of the proof of Theorem 2.1 we obtain the existence of the
unique analytic solution Y(e) of (1.7) such that xij(c) = yij(c) i e e K.
Moreover X(0) = Y(0). This manifests that dim U > dim L\,'o > k. Now Lemma 4.1
implies (4.13). The proof of theorem is completed.

Theorem 4.1 can be obviously applied to the case B(e) = A(e).

Definition 4.1. Consider the system of matrix equations

K
) R UL SRR

for k = 0,1,...,). Let U be the subspace spanned by the matrices R in the

Q

}

solutions (RO,....Rj). Define wu' to_be the following non-negative integer

(4.15) 2 U, Uy, =V

1
lu'-l ¢
where U 1is given by Lemma 4.1.

~16-
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Theorem 4.1 inmplies
(4.106) ut < v,
We conjecture

Conjecture. let u be the minimal index at the origin (Definition 2.1). Let u' be

given as above. Then

4.17 [ VRS

In case that u' = 0 we have that «x = x(0) and the conjecture follows from
Wasow's result. Suppose that u' = 1. Thus A(c) satisfies the conditions of Theorem
4.2 (see Introduction). It is easy to show that A(e¢) given in (1.5) fulfills the
conditions of Theorem 4.2. Therefore the example (1.5) manifests that u > 0. Thus,
indeed, Theorem 4.2 establishes the equality (4.17) in case that u' = 1. To prove
Theorem 4.2 we need an auxiliary lemma.

lemma 4.2. Let X and Y be mx m matrices. Assume that vr(X) = k. Consider the

subspace ! of all vectors x of the form

(4.18) Xe0, Cvx = 0, EX =0,

for all possible {. Assume that

(4.19) dim U =m=X' { <m=X) .

L
Then all k' x k' minors of X ¢+ ¢Y are of the form - kO(l). Moreover there

exists an k' x k' minor Q(¢) of X + €Y such that

k'

(4. 20) loter] = be® (1 + 001)), B F O .

Proof. From Lemma 2.1 it follows that any k' x k' minor of X ¢ ¢Y is of the form

Va
ok kn(l). Suppose that (4.20) does not hold. Thus all k' x k' minors of X ¢ ¢Y

'kl
€

are of the form 0(1). let §S.,8 be two nonsingular matrices. Applying the

s

Cauchy=Bihet formula we deduce that all k' x k' minors of S XS ¢ ¢8 Y8 ave of

: G O
K'=k+l :
the form « 0(1)., We establish the lemma by showing that the above conclusion
fails for some choice of nonsingular Sl and S, Let
4.2 X, = S X8 Y, = 8 YS

T BT e U TR O T N A syt




We can choose S1 and s2 such that
E ]
. 0 Y Y I, 0
(4.22) X, = l " ], ¥, - Ll Y,, = e 2 :
0o 0 Y21 Y22 0 0
P Here xl and Yl are partitioned in the same manner and Ij is the j x j identity .
matrix. Clearly (4.18) - (4.19) holds if we replace X and Y by xl and Yl' How- 3
ever in that case we immediately deduce that m - k' = m - k - . Consider k' x k' ' 4
minor Q(e) of xl + ch based on the first k' »rows and columns. Applying the ?
Laplace expansion to the last t rows of Q(¢) we deduce straightforward (4.20) with
b = 1. This establishes the lemma.
3
Proof of Theorem 4.2. Consider the expansion A(€) given by (2.30). Let
|
! (4.23) X Ao.l I.Ao. Y Al.l I.Al .
; So r(X) = n2 - x(0) and dim !/ = k. Thus according to Lemma 4.2 the conditions of
Theorem 2.3 are satisfied so u < 1. This in return is equivalent to (3.2) - (3.3).
- : 1
That is Al Bl(ho)
Q We conclude this section with a different formulation of the system (4.1). Let
AO""'Aj-l be n x n matrices. Define C(Ao,...,Aj_l) to be nj x nj matrix - ]
which is block upper triangular
b 3 .
. vee - - e C = A f >
% (4.24) C(AO. 'Aj-l) (Cpq)l' Cpq 0 for q < p - = or q>p
% Definition 4.2. Let AO'BO""'Aj I'Bj 1 be given n x n matrices. The matrices
i SESANSSANSSiSs, MBS = -] SRJANSn
| C(AO.....Aj l) and C(BO""'aj-l) are called strongly similar if there exist n x n
matrices RO""'Rj-l satisfying
(4:25) CAs,eoiBy |ICRG, .o ouRy ) = ClRyoevwsRy_IC(BG,.. 0B, ), where IR | # 0 ;
As ]
i ;
(4.26) IC(RO,...,Rj_l)l |R0| 3
the assumption that |Ro| # 0 implies in particular that C(AO""'Aj-l) is similar ‘
to C(Bo,...,Bj 1). Now the system (4.1) for k = 0,...,3 = 1 1is equivalent to one
| |
matrix equation (4.25).
-18=-
:
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Theorem 4.3. Let A(r) and B(¢) be n Y n matrices analytic in ¢ at the origin.
- Then (1.10) - (1.11) are satisfied if and only if C(Aﬁ....,Au) and C(BO.....BN) are
strongly similar. 1In particular if A(c) 3 B{c) then C(AO..‘.,AN) and C(Bo,....nm)
! v are similar for any « > 0.
¢
: It is left to show that the notion of strong similarity is indeed stronger than
i

the similarity notion. Choose

01 a . a o
(4.27) R e RN G | L NI L B

D) Q - ~
s 21 %32 €21 22

=]
-

-
—

According to Theorem 3.2 C(Ao.hl) is stronaly similar to C(An'nl‘ if and only if

(4.28 a +a - ¢ +

o s T b U (T

On the other hand it G # 0 then C(Ao.lx\ has only one linearly independent eigen-

o

vector. Thus if ay # 0 C(ALA) is similar to ]
0o 100
[ 0 010
l 0 001
. 0 000

Therefore if Gy # 0 and LYY ¥ 0 C(An.Al) and C(&O.Bll arve similay

-19-




5. OBSERVATIONS AND REMARKS.

We observe that the general problem stated in terms of the equations (4.1) for

-
v

k =0,1,...,0 1is in fact of the same degree of complexity as Problem 3.1 (i.e. w = 1).

More precisely we have
Theorem 5.1. Let 2 be kn X kn a block diagonal matrix of the form

)n

5 Z = di couoH}, H = ; ’
(5.1) diagiH, H H (6(1*1)3 1

et X and Y be kn x kn block matrices

k (pq) ,\n k e
L = ’ = e o X - N - (P X
(5.2) B e B = e Y By o g SR
Define
(r),k - mix). K
A = f(a )1, B (b )1 3
(5.3)
r+l r+l
(r) _ (pq) () (pq) g :
anq 1§1 X (n-r+i-1)i' Ppq 121 P oneesteait T Qe = 1

Then X 1is conjugated to Y with respect to 2 if and only if C(Ao....,An_l) is

strongly similar to C(Bo,...,Bn_l).

To prove the theorem we need the following lemma.

Lemma 5.1. Let X be an kn X kn block matrix given by (5.2). Assume furthermore

that each qu matrix is an upper triangular matrix. Then

n
(pq) |k
(5.4) Ix] = n Jx g
y=l rr P,q=1

Proof. Expand X by the rows n,2n,...,kn. Obviously the only k X k non-vanishing
minor which consists of n,2n,...,kn rows is the minor composed of the columns
n,2n,...,kn of X. This minor is equal ICX;ﬁq))tl- Now the lemma follows by

induction.

Proof of Theorem 5.1. According to Lemma 3.2 if P commutes with 2 then P has

the following form

(5.5) R , R, = (23K

v i =0pe0aepn =1,
pal’ pa Z0 Pa i pa 1 4

T

,

S




Here Ry,...,R _, are arbitrary k k matrices. According to Lemma 5.1
(5.6) P = IROI“ :
. . : 2 2 }
The subspace of all commuting matrices with 2 is spanned by k n linearly independent
matrices

5.1 v = (vPA) X ,(pql)

o a8 1" Vas = GquBqul' BeBeD ™ L ceark; L ®m 0, 0= 1 .

According to Lemma 3.1 P satisfies (3.5) for some Q if and only if

(5.8) tr(V (P = PY)] = 0, pig = Lioooik, 4= Opeegn - 1
Now
s 3
tr(v . (XP - PY)] = ¢t x_ .p - Y, P )H
| pqi } 2[321 qi jp ip 43 ]
(5.9)
n-i-1 i
e 7 [P erx ju"‘“) - 2Dy, W™
o . q m P
Note that (5.3) is equivalent to
{5.10) AR R U o TE A T L W i O
Pa Pq Pq Pq

Thus (5.8) for p,q =1,...,k reduces to

n-i-1
(5.11) I
m=0

i Rman-m-i-l) =0, i =0,c000n=-1.

That is we have the equalities (4.1) for w = n - 1. The assumption that P is non-
singular together with (5.6) yields that Ro is non-singular. So C(Ao,...,An_l) is

strongly similar to C(BO,....Bn_ ). The proof of the theorem is concluded.

1
So if 2 is of the form diag{H,H} then Problem 3.1 is reducible to the
equalities (4.1) with w=n-1 where all matrices are 2 x 2, This in principle should
not be difficult.
We conclude our paper with the following remarks about pointwise similarity of
A(e) and B(e) in Dr for a small r. Obviously if A(e) B B(e) then they must
have the same characteristic polynomial

n
(5.12) P ) ™ ae,
=1 )

-21-
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Moreover there exists r' > 0 such that for 0O < |x| < r' the invariant polynomials

of A(f) and B(€) are also analytic functions in ¢. ‘Therefore the elementary
divisors vx(l.c).....wp(\.c) and *1(\.‘),....$q(\.r) of A(f) and B(¢) respec-
tively are analytic in ¢ for O < '!! < r", This in particular means that in this
region the degrees of the elementary divisors are constant. So if A(¢) and B(g)
have the same characteristic polynomial (5.12) and are similar at 0 < ICO! < r* they

must be pointwise similar for 0 < |c| < r"t So if A(0) ~ B(0) we have that

A(e) ; B(e), € ¢ Dr“
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